Kính mời quý khách like fanpage ủng hộ DVMS!

 

Tư vấn, xây dựng, chuyển giao các giải pháp BIG DATA

Liên hệ tư vấn ngay >>

Ứng Dụng Bigdata

Theo một báo cáo mới được công bố tại Diễn đàn Kinh tế Thế giới, những thay đổi về nhân khẩu học và tiến bộ kỹ thuật có thể dẫn đến việc 5 triệu việc làm sẽ biến mất vào năm 2020. Tuy nhiên, ngược lại có một số công việc lại được dự đoán sẽ có sự tăng trưởng đáng kể, trong đó có nghề phân tích dữ liệu.

Chọn nghề phân tích dữ liệu?

Ở 2 bài viết trước đã giới thiệu đến các bạn thuật toán Classification đầu tiên là KNN (K – nearest neighbor) và một số phương pháp đánh giá mô hình phân loại như Hold out, Cross validation, hay Confusion matrix, Lift, Gain chart, ROC/ AUC. Trở lại với chủ đề về những thuật toán phân loại trong Data mining, lần này chúng tôi và các bạn sẽ tìm hiểu về Decision Tree, thuật toán có thể nói là “nổi tiếng”, “phổ biến” mà bất kỳ ai hoạt động và làm việc trong lĩnh vực khoa học dữ liệu, hoặc phân tích dữ liệu đều phải biết đến.

THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.1) : CLASSIFICATION & REGRESSION TREE (CART)

Giá trị khách hàng suốt vòng đời – Customer lifetime value

Một trong những khái niệm mà bất kể chuyên gia tiếp thị marketing hay chủ doanh nghiệp cần để ý là giá trị của khách hàng trong suốt vòng đời của họ. Điều này đặc biệt quan trọng khi đề ra chiến lượt tiếp thị marketing, định vị thương hiệu của mỗi nhãn hàng ( brand).Cụ thể hơn là khi đưa ra quyết định, tính toán về chi phí quảng cáo marketing cho mỗi khách hàng và ngân sách cho các chiến dịch tiếp thị marketing.

Giá trị suốt vòng đời của khách hàng – Customer lifetime value

Bối cảnh, nguyên nhân tại sao các công ty ngày nay cần định hướng dữ liệu (Data – driven)

Nếu các bạn có theo dõi những các bài viết trước đây của thì chúng tôi đã đề cập nhiều về tầm quan trọng của dữ liệu –  được coi là nguồn sống của mọi tổ chức trong thời đại 4.0 – cũng như các xu hướng của Big Data, Data Analytics, và nhu cầu khai thác dữ liệu để đạt được giá trị, lợi ích trong kinh doanh ngày càng được quan tâm hơn.

CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 1)

với khát vọng là công ty đi đầu trong lĩnh vực khai phá dữ liệu Big Data, và tư vấn chiến lược trong tương lai, sẵn sàng hỗ trợ, đồng hành cùng bạn – dù bạn là ai – trên con đường khai phá Big Data. Nhưng trước hết công ty giới thiệu các bước khai thác Big Data. Theo SAS, các bước khai phá Big Data bao gồm:

THÁCH THỨC TRONG QUÁ TRÌNH KHAI THÁC DỮ LIỆU BIG DATA

Ở các bài viết trước về ứng dụng của Big Data trong lĩnh vực E-commerce hay thương mại điện tử, Big Data Uni đã đề cập đến những dữ liệu các công ty triển khai E-commerce cần khai thác và giá trị chúng đem lại, đặc biệt là giới thiệu sơ về lợi ích Predictive Analytics. Lần này, chúng ta sẽ đi sâu hơn và bàn luận về tầm quan trọng của phân tích dự báo trong từng trường hợp cụ thể. Nhưng trước hết, chúng ta cùng tìm hiểu một chút về định nghĩa phân tích dự báo.

LỢI ÍCH CỦA PREDICTIVE ANALYTICS TRONG THƯƠNG MẠI ĐIỆN TỬ

Hacker tối qua đã tung thông tin nghi là của hai triệu khách hàng từ một ngân hàng Việt Nam lên Raidforums, một website chuyên mua bán dữ liệu.

Các thông tin bị rò rỉ bao gồm tên đầy đủ, số chứng minh thư, số điện thoại, địa chỉ nhà, ngày tháng năm sinh, giới tính, email và nghề nghiệp.

Hai triệu tài khoản khách hàng MSB Bank có thể tải về dễ dàng trên mạng.

Murray Webb, 33 tuổi, tốt nghiệp thạc sĩ về thống kê ứng dụng (applied statistics) tại Trường Đại học Kennesaw (Atlanta, Mỹ), hiện kiếm được 160.000 đô la một năm với công việc chủ yếu là theo dõi phần thông tin về dữ liệu chăm sóc sức khỏe khách hàng cho các bệnh viện. Webb cho biết hằng tuần đều có người đại diện của các công ty cũng như các công ty chuyên cung cấp nguồn nhân lực tìm đến anh và đưa ra các lời mời làm việc như một nhà khoa học dữ liệu (data scientist).

Khoa học dữ liệu – nghề đang hái ra tiền ở Mỹ

KHI MỘT CHUYÊN GIA PHÂN TÍCH DỮ LIỆU NHẬN ĐƯỢC YÊU CẦU TỪ CÁC PHÒNG BAN, BỘ PHẬN HAY LÃNH ĐẠO CÔNG TY, CHUYÊN GIA ẤY CÓ THỂ NHẢY VÀO PHÂN TÍCH NGHIÊN CỨU NGAY VẤN ĐỀ. NGƯỜI LÀM PHÂN TÍCH DỮ LIỆU SẼ MONG MUỐN TỪ YÊU CẦU ĐƠN GIẢN BAN ĐẦU SẼ TÌM RA PHÁT HIỆN TUYỆT VỜI, ĐƯA RA ĐƯỢC CÁC ĐỀ XUẤT HAY NHẤT ĐỂ ÁP DỤNG CHO CÔNG TY. NHƯNG THỰC TẾ THƯỜNG KHÔNG THUẬN LỢI NHƯ VẬY.

Các bước chuẩn bị cho một dự án phân tích dữ liệu thành công!

Tầm quan trọng của Big Data (Dữ liệu lớn) và sự nhận thức về giá trị của nó giảm dần, nhiều công ty đầu tư vào lĩnh vực này nhưng không đem lại kỳ vọng, và kết quả tốt lợi. Nguyên nhân do nhu cầu và tính chất phức tạp của hệ thống công nghệ kỹ thuật phải xây dựng, bảo trì, chi phí lại cao, thiếu nguồn nhân lực có chuyên môn sâu, và kỹ năng về lĩnh vực Data Science hay Data Analytics,…

TỔNG QUAN VỀ BIG DATA TRÊN TOÀN CẦU

1. Xu hướng nghề nghiệp trong tương lai

Hiện tại, chúng ta đang sống trong giai đoạn đầu của thời kỳ cách mạng công nghiệp lần thứ 4. Triết lý của cuộc cách mạng công nghiệp 4.0 là chúng ta phải sử dụng công nghệ thông tin để tăng được năng suất lao động, từ đó tiết kiệm được chi phí, mang lại lợi ích cho người tiêu dùng.

CHUYÊN GIA PHÂN TÍCH DỮ LIỆU – SỰ THÀNH CÔNG TRONG TƯƠNG LAI

Một câu nói nổi tiếng của William Glasser, chuyên gia tâm thân học Mỹ:

Chúng ta học….

10% của những gì ta đọc được

20% của những gì ta nghe thấy

30% của những gì ta nhìn thấy

50% của những gì ta nghe và nhìn thấy

70% của những gì ta thảo luận

80% của những gì ta trải nghiệm

95% của những điều ta dạy người khác

Phần mềm hiện thị dữ liệu, phân tích dữ liệu

Dữ liệu khách hàng hay Customer data được coi là tài sản, nguồn thông tin vô giá đối với mọi công ty thuộc nhiều lĩnh vực kinh doanh khác nhau. Việc triển khai các quy trình khai thác, dự án nghiên cứu, phân tích Customer data với mục đích tìm hiểu, nắm bắt mong muốn, nhu cầu thầm kín của khách hàng, và chuyển nó thành những giá trị cụ thể thông qua từng chiến lược, kế hoạch hoạt động chính là chìa khóa cạnh tranh của mỗi tổ chức ngày nay.

TỔNG QUAN VỀ CUSTOMER DATA (P.1) – DỮ LIỆU KHÁCH HÀNG LÀ GÌ?

Để thành công và phát triển, một công ty cần phải có khả năng đạt được, giữ chân, thỏa mãn và thu hút càng nhiều khách hàng càng tốt. Hiểu rõ hơn về khách hàng thông qua phân tích dữ liệu khách hàng vừa là công việc, nhiệm vụ rất quan trọng vừa là cơ sở để đánh giá công ty hoạt động hiệu quả như thế nào.

TỔNG QUAN VỀ CUSTOMER DATA (P.2) LỢI ÍCH CỦA DỮ LIỆU KHÁCH HÀNG

Vào năm 2016, khi Facebook cho ra mắt nền tảng trò chuyện Facebook Messenger với phiên bản nâng cấp cho phép các công ty, các nhà phát triển có thể xây dựng các Chatbot của riêng mình để phục vụ cho các mục đích khác nhau. Chính vì vậy, kể từ đó, sự phổ biến của thuật ngữ “Chatbot” được lan rộng, mặc dù ngày nay nhiều người cũng chỉ mới lần đầu nghe đến nhưng đối với các chuyên gia, nhà quản lý của các tập đoàn công nghệ thế giới, Chatbot hay bất kỳ công nghệ AI (Artifical Intelligence Trí tuệ nhân tạo) có thể hiểu và tương tác với khách hàng từ lâu đã trở thành xu hướng mạnh mẽ, lan rộng , cách mạng hóa các hoạt động kinh doanh.
LỢI ÍCH CỦA CHATBOT TRONG VIỆC KHAI THÁC BIG DATA

Khoa học phân tích dữ liệu là một nhánh rẽ quan trọng trong lĩnh vực công nghệ thông tin. Nó sớm bộc lộ những tiềm lực quan trọng thúc đẩy sự phát triển của thế giới. Với sự phát triển nhanh chóng và lan rộng của mình, ngành Khoa học Dữ liệu đặc biệt thu hút sự quan tâm của các chuyên gia Việt Nam và cả trên khắp thế giới.

Khoa học phân tích dữ liệu – Góc nhìn từ Việt Nam và Thế Giới

Page 1 of 4

Copyright© Bigdata Solutions. All Rights Reserved. Tư vấn, xây dựng, chuyển giao Bigdata. Trực thuộc DVMS

Tìm kiếm